84 research outputs found

    One-dimensional transport in bundles of single-walled carbon nanotubes

    Full text link
    We report measurements of the temperature and gate voltage dependence for individual bundles (ropes) of single-walled nanotubes. When the conductance is less than about e^2/h at room temperature, it is found to decrease as an approximate power law of temperature down to the region where Coulomb blockade sets in. The power-law exponents are consistent with those expected for electron tunneling into a Luttinger liquid. When the conductance is greater than e^2/h at room temperature, it changes much more slowly at high temperatures, but eventually develops very large fluctuations as a function of gate voltage when sufficiently cold. We discuss the interpretation of these results in terms of transport through a Luttinger liquid.Comment: 5 pages latex including 3 figures, for proceedings of IWEPNM 99 (Kirchberg

    Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes

    Full text link
    Ultrafast photocurrent measurements are performed on individual carbon nanotube PN junction photodiodes. The photocurrent response to sub-picosecond pulses separated by a variable time delay {\Delta}t shows strong photocurrent suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias VSD, and is twice as long for photon energy above the second subband E22 as compared to lower energy. The observed photocurrent behavior is well described by an escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure

    Chemical doping of individual semiconducting carbon-nanotube ropes

    Get PDF
    We report the effects of potassium doping on the conductance of individual semiconducting single-walled carbon nanotube ropes. We are able to control the level of doping by reversibly intercalating and de-intercalating potassium. Potassium doping changes the carriers in the ropes from holes to electrons. Typical values for the carrier density are found to be ∼100–1000 electrons/μm. The effective mobility for the electrons is μeff∼20–60 cm2 V-1 s-1, a value similar to that reported for the hole effective mobility in nanotubes [R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998)]

    Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes

    Full text link
    Ultrafast photocurrent measurements are performed on individual carbon nanotube PN junction photodiodes. The photocurrent response to sub-picosecond pulses separated by a variable time delay {\Delta}t shows strong photocurrent suppression when two pulses overlap ({\Delta}t = 0). The picosecond-scale decay time of photocurrent suppression scales inversely with the applied bias VSD, and is twice as long for photon energy above the second subband E22 as compared to lower energy. The observed photocurrent behavior is well described by an escape time model that accounts for carrier effective mass.Comment: 8 pages Main text, 4 Figure
    • …
    corecore